Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325534

RESUMO

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Assuntos
Borboletas , Animais , Filogenia , Borboletas/genética , Nova Guiné , Austrália , Ecossistema
2.
Ecol Evol ; 14(2): e10838, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322004

RESUMO

We report the first record of the microlepidopteran Plodia interpunctella beyond the South Shetland Islands at the Chilean Yelcho scientific station (64°52'33.1428″ S; 63°35'1.9572″ W), Doumer Island, close to the west coast of the Antarctic Peninsula. It is notable that P. interpunctella, a globally distributed stored product pest species, exhibits a remarkable capacity for prolonged viability within food storage facilities. The dual challenges of food transportation and storage in the context of Antarctica's challenging operational conditions may have facilitated P. interpunctella's initial arrival to the Antarctic region. Non-perishable food items, such as grains, flour and rice, provide practical options for the bulk food transportation and storage required in the long-term operation of Antarctic research stations. The presence of P. interpunctella in Antarctica, even if restricted to synanthropic environments within buildings, is a clear threat to Antarctic biodiversity, not only through being an invasive species itself but also as a potential vector for other non-native species (bacteria, acari, between others.), which could carry diseases to the native species.

3.
Insects ; 15(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392516

RESUMO

The converse Bergmann's rule is a pattern of body size variation observed in many ectothermic organisms that contradicts the classic Bergmann's rule and suggests that individuals inhabiting warmer climates tend to exhibit larger body sizes compared to those inhabiting colder environments. Due to the thermoregulatory nature of Bergmann's rule, its application among ectotherms might prove to be more complicated, given that these organisms obtain heat by absorbing it from their habitat. The existence of this inverse pattern therefore challenges the prevailing notion that larger body size is universally advantageous in colder climates. Ceroglossus chilensis is a native Chilean beetle that has the largest latitudinal range of any species in the genus, from 34.3° S to 47.8° S. Within Chile, it continuously inhabits regions extending from Maule to Aysen, thriving on both native and non-native forest species. Beyond their remarkable color variation, populations of C. chilensis show minimal morphological disparity, noticeable only through advanced morphological techniques (geometric morphometrics). Based on both (1) the "temperature-size rule", which suggests that body size decreases with increasing temperature, and (2) the reduced resource availability in high-latitude environments that may lead to smaller body sizes, we predict that C. chilensis populations will follow the converse Bergmann's rule. Our results show a clear converse pattern to the normal Bergmann rule, where smaller centroid sizes were found to be measured in the specimens inhabiting the southern areas of Chile. Understanding the prevalence of the converse Bergmann's rule for ectotherm animals and how often this rule is broken is of utmost importance to understand the underlying mechanisms allowing organisms to adapt to different environments and the selective pressures they face.

4.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340048

RESUMO

Geometric morphometrics was used to determine whether geographic isolation could explain differences in wing size and shape between and within continental (27°S to 41°S) and insular (Rapa Nui) populations of Culex pipiens s.s. Linnaeus and their biotypes (f. pipiens and f. molestus). Molecular protocols based on polymorphisms in the second intron of nuclear locus ace-2 (acetylcholinesterase-2) were used to differentiate Cx. pipiens s.s. from Cx. quinquefasciatus Say, and an assay based on polymorphisms in the flanking region of a microsatellite locus (CQ11) was used to identify biotypes. Culex pipiens f. molestus and hybrids shared larval habitats in all continental sites, while Cx. pipiens f. pipiens was found in 5 of the 10 sites. Only biotype molestus was found in Rapa Nui (Easter Island) Pipiens and molestus biotypes occur sympatrically in aboveground locations, and only molestus was found in the underground site (ME). Biotype molestus was dominant in rural locations and preferably anthropophilic. These results agree with the ecological descriptions previously reported for the biotypes of Cx. pipiens s.s. Procrustes ANOVA only showed differences in centroid size between biotypes in females and males and did not show significant differences in wing shape. However, we found significant differences among the geographic areas in the centroid size and wing shape of both females and males. Particularly, the population of Rapa Nui Island had shorter wings than the continental populations. The results highlight the effects of geographic and environmental processes on morphotypes in vector mosquitoes.


Assuntos
Culex , Culicidae , Masculino , Feminino , Animais , Acetilcolinesterase , Mosquitos Vetores , Culex/genética
5.
Animals (Basel) ; 13(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003092

RESUMO

The first instar nymphs, both male and female, of the giant stick insect Cladomorphus phyllinus Gray, 1835 were carefully described and measured, revealing a remarkable sexual dimorphism that is considered rare among insects and is poorly explored in the order Phasmida. The studied F1 nymphs originated in captivity from eggs laid by a coupled female specimen collected in the Atlantic Forest in the vicinity of Petrópolis city, state of Rio de Janeiro, Brazil. The first instar nymphs of C. phyllinus were measured and illustrated in high-resolution photographs to show the general aspects and details of sexually dimorphic traits, making clear the phenotypic differences in the sexes. A total of 100 nymphs were kept alive until morphological sexual dimorphism was confirmed and quantified. All recently hatched first instar nymphs were separated based on the presumed male and female characteristics, i.e., the presence and absence of the suture in the metanotum in the males and females, respectively, had their sexes confirmed in 100% of the specimens as previously assigned. These results confirm this new morphological trait, which here is named "alar suture" as sex-specific in the first instar nymphs, a novelty in this stage of development of sexual differentiation. In addition, the distinct conformations of the last three abdominal sternites of both sexes were recorded.

6.
Animals (Basel) ; 13(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835650

RESUMO

The box tree moth (Cydalima perspectalis Walker, 1859; Lepidoptera: Crambidae) is an invasive species naturally distributed in Asia. The caterpillars in all developmental stages cause damage through defoliation of plants, and ultimately the death of the plant itself may occur. It is possible to recognize this species by its silk barriers and threads, and in the case of an intense attack, the entire plant will be covered with them. In Europe, this species' presence was first recorded in 2007 in Germany and the Netherlands, and it is now widely distributed. In Croatia, its existence was first recorded in 2012, in Istria, while substantial damages were recorded in 2013. This work aimed to determine the morphological variability of C. perspectalis from Croatia and assess its invasive character, the possibility of flight, and the risk of further spread. The methods of geometric morphometrics were used as the analysis of wing shape. A total of 269 moths from different locations in Croatia were collected, the upper wings of males and females were analyzed using 14 landmarks. Significant differences in wing shapes between terrestrial and coastal populations were found, as well as subtle wing shape sexual dimorphism. The implications of this variability in species invasiveness and capacity of spread are discussed in this paper. We also extrapolate the usefulness of our results and suggest strategies for predicting and managing invasive species.

7.
PeerJ ; 11: e15655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483979

RESUMO

Ophiothrix angulata (Say, 1825) is one of the most common and well-known ophiuroids in the Western Atlantic, with a wide geographic and bathymetric range. The taxonomy of this species has been controversial for a century because of its high morphological variability. Here we integrate information from DNA sequence data, color patterns, and geometric morphometrics to assess species delimitation and geographic differentiation in O. angulata. We found three deeply divergent mtDNA-COI clades (K2P 17.0-27.9%). ITS2 nuclear gene and geometric morphometrics of dorsal and ventral arm plates differentiate one of these lineages, as do integrative species delineation analyses, making this a confirmed candidate species.


Assuntos
Equinodermos , Animais , Sequência de Bases , DNA Mitocondrial/genética , Equinodermos/genética , Mitocôndrias/genética
8.
Biology (Basel) ; 12(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372051

RESUMO

Bergmann's rule relates the trend of increasing body size with higher latitudes, where colder climates are found. In the Mexican Pacific, three marine ecoregions are distinguishable across a latitudinal gradient. Stenoplax limaciformis is an abundant chiton species that is distributed on rocky shores in these ecoregions. Geometric morphometric analyses were performed to describe the shape and size variation of S. limaciformis between marine ecoregions that vary in sea surface temperature with latitude, thus testing Bergmann's rule. Individuals' body shape ranged from elongated to wide bodies. Although there was variation in chitons' body shape and size, the was no evidence of allometry among localities. The Gulf of California is the northernmost ecoregion evaluated in this work, where larger chitons were observed and lower sea surface temperature values were registered. The results suggest that S. limaciformis follows a trend to Bergmann's rule, such as endotherms. These mollusks do not need heat dissipation, but they do need to retain moisture. In addition, larger chitons were observed in zones with high primary productivity, suggesting that chitons do not delay their maturation due to food shortage.

9.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188966

RESUMO

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Assuntos
Borboletas , Filogenia , Animais , Evolução Biológica , Borboletas/genética
10.
PLoS One ; 18(2): e0281336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812178

RESUMO

We describe Bothriurus mistral n. sp. (Scorpiones, Bothriuridae) from the Chilean north-central Andes of the Coquimbo Region. This is the highest elevational discovery for Bothriurus in the western slopes of the Andes. This species was collected in the Estero Derecho Private Protected Area and Natural Sanctuary as part of the First National Biodiversity Inventory of Chile of the Integrated System for Monitoring and Evaluation of Native Forest Ecosystems (SIMEF). Bothriurus mistral n. sp. is closely related to Bothriurus coriaceus Pocock, 1893, from the lowlands of central Chile. This integrative research includes a combination of traditional morphometrics and geometric morphometric analyses to support the taxonomic delimitation of the species.


Assuntos
Biodiversidade , Ecossistema , Animais , Escorpiões , Florestas , Chile
11.
Integr Zool ; 18(2): 372-384, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36300714

RESUMO

Phenotypic variation in organisms depends on the genotype and the environmental constraints of the habitat that they exploit. Therefore, for marine species inhabiting contrasting aquatic conditions, it is expected to find covariation between the shape and its spatial distribution. We studied the morphology of the head and cephalic sensory canals of the eelpout Austrolycus depressiceps (4.5-22.5 cm TL) across its latitudinal distribution in South Pacific (45°S-55°S). Geometric morphometric analyses show that the shape varied from individuals with larger snout and an extended suborbital canal to individuals with shorter snouts and frontally compressed suborbital canal. There was size variation across the sampled populations, but that size does not have a clear latitudinal gradient. Only 8% of the shape variation relates to this size variation (allometry), represented by a decrease in the relative size of the eye, and a depression of the posterior margin of the head. There were spatial differences in the shape of the head, but these differences were probably caused by allometric effects. Additionally, 2 of the canals of the cephalic lateralis pores and the head shape showed modularity in its development. This study shows that the morphology of marine fish with a shallow distribution varies across distances of hundreds of kilometers (i.e., phenotypic modulation).


Assuntos
Ecossistema , Meio Ambiente , Animais , Genótipo
13.
Animals (Basel) ; 12(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36496959

RESUMO

Understanding the interspecific morphological variability of Caquetaia kraussii (Perciformes: Cichlidae) between different localities in its distribution range is becoming essential, as this species constitutes a valuable resource for the economy and subsistence of the local human communities where it is endemic in Colombia and Venezuela. In order to develop efficient farming and handling plans for this species, a deep understanding of the factors and mechanisms generating morphological variability is crucial. This study analyzes the morphological variability of C. kraussii by using geometric morphometrics in four localities distributed between the Dique and North channels, which are part of the Bolívar department in Colombia. Likewise, the effect of environmental variables such as temperature (T°), dissolved oxygen (OD) and pH on morphological variability was analyzed using a partial least squares approach. The results show that environmental stress has an influence on ~10% of the body shape of C. kraussii, whereas ~90% of the body shape is not directly influenced by environmental parameters, suggesting an effect from stress related to sexual dimorphism. Similarly, the analyses show shape variation among localities, mainly between populations of lotic environments and those of lentic environments. This morphological disparity seems to be subject to environmental and sexual stresses in the different localities.

14.
Biology (Basel) ; 11(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-36101339

RESUMO

The integration of complex structures is proportional to the intensity of the structural fusion; its consequences are better known than the covariational effects under less restrictive mechanisms. The synthesis of a palimpsest model based on two early parallel pathways and a later direct pathway explains the cephalothoracic complexity of decapod crustaceans. Using this model, we tested the evolvability of the developmental modularity in Aegla araucaniensis, an anomuran crab with an evident adaptive sexual dimorphism. The asymmetric patterns found on the landmark configurations suggest independent perturbations of the parallel pathways in each module and a stable asymmetry variance near the fusion by canalization of the direct pathway, which was more intense in males. The greater covariational flexibility imposed by the parallel pathways promotes the expression of gonadic modularity that favors the reproductive output in females and agonistic modularity that contributes to mating success in males. Under these divergent expressions of evolvability, the smaller difference between developmental modularity and agonistic modularity in males suggests higher levels of canalization due to a relatively more intense structural fusion. We conclude that: (1) the cephalothorax of A. araucaniensis is an evolvable structure, where parallel pathways promote sexual disruptions in the expressions of functional modularity, which are more restricted in males, and (2) the cephalothoracic palimpsest of decapods has empirical advantages in studying the developmental causes of evolution of complex structures.

15.
Animals (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739811

RESUMO

Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.

16.
Animals (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681826

RESUMO

Triatoma brasiliensis brasiliensis Neiva, 1911 is one of the most important vectors of Chagas disease in the Brazilian semiarid regions in the north-east. The risk imposed by T. b. brasiliensis to the human populations, due to frequent invasions and/or colonization of the domiciles, demands constant monitoring and control actions as well as an understanding of its evolutionary process. In this context, the following research studies the pattern of shape adaptation over time using a large dataset from 102 years of specimen collections in order to identify the morphological plasticity of this vector in Brazil. This dataset was analyzed using geometric morphometrics tools and the timescale was divided into eight different groups, containing specimens from 1912 to 2014. Geometric morphometrics analysis showed an interesting morphological stasis in the wing shape of T. b. brasiliensis, which allowed us to understand the high capacity of adaptation to changes in climate condition through time, and the invasive status which Triatoma species have around the world. Moreover, these results showed novel findings as an interesting phenotypic pattern, with no modifications in more than 100 years, leading us to understand the shape evolution in Triatominae as a vector species of diseases.

17.
Animals (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565606

RESUMO

Island ecosystems differ in several elements from mainland ecosystems and may induce variations related to natural selection and patterns of adaptation in most aspects of the biology of an organism. Thylamys elegans (Waterhouse, 1839) is a marsupial endemic to Chile, distributed from Loa River to Concepción. Historically, three subspecies have been described: Thylamys elegans elegans, Thylamys elegans coquimbensis and Thylamys elegans soricinus. For this research, two morphometric approaches and a biomechanical model were used to compare the mandible shapes and biomechanics between two Chilean mouse opossum populations belonging to different subspecies: one from the coastal desert of Chile (T. e. coquimbensis) and the other from the central inland region (T. e. elegans). Additionally, mandibles of insular populations found in the Reserva Nacional Pinguino de Humboldt (RNPH)), from which the subspecies association is unknown, were also included. The results showed that insular populations have differences in mandibular shapes, sizes and biomechanical characteristics compared to continental populations, which may be related to environmental variables like aridity and vegetation cover, prey type, insularity effects and/or the founder effect on micromammals, apart from vicariance hypotheses and other selective pressures.

18.
Biology (Basel) ; 11(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35453766

RESUMO

Static, developmental, and evolutionary variation are different sources of morphological variation which can be quantified using morphometrics tools. In the present study we have carried out a comparative multiple level study of integration (i.e., static, developmental, and evolutionary) to acquire insight about the relationships that exist between different integration levels, as well as to better understand their involvement in the evolutionary processes related to the diversification of Drosophila's wing shape. This approach was applied to analyse wing evolution in 59 species across the whole genus in a large dataset (~10,000 wings were studied). Static integration was analysed using principal component analysis, thus providing an integration measurement for overall wing shape. Developmental integration was studied between wing parts by using a partial least squares method between the anterior and posterior compartments of the wing. Evolutionary integration was analysed using independent contrasts. The present results show that all Drosophila species exhibit strong morphological integration at different levels. The strong integration and overall similarities observed at multiple integration levels suggest a shared mechanism underlying this variation, which could result as consequence of genetic drift acting on the wing shape of Drosophila.

19.
Animals (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34438893

RESUMO

The Asian ladybird (Harmonia axyridis Pallas), native to Asia, is one of the 100 most invasive species in the world and has spread worldwide. This study aimed to characterize color forms of H. axyridis in Croatia and to analyze the variability of wing shape between populations and indicated forms. Geometric morphometric methods were used to analyze a total of 129 left and right wings in males and 126 left and right wings in females of H. axyridis collected from four different sites in Croatia. The results show a significant difference in wing shapes between the studied forms. Each form had its own specific morphotype that likely originated under the influence of genetic changes in the species. This study demonstrates that the use of geometric morphometric analysis is effective in studying the variability in H. axyridis populations. As this study is the first of its kind, for further clarity, it is necessary to conduct additional studies on a larger number of sites and an equal number of individuals of all forms.

20.
Proc Biol Sci ; 288(1954): 20210754, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34229490

RESUMO

Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.


Assuntos
Tartarugas , Adaptação Fisiológica/genética , Animais , Deriva Genética , Oceano Pacífico , Tartarugas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...